Naming Convention for Web-Services in
Platform for Automatic, Normalized Annotation
and Cost-Effective Acquisition of Language
Resources for Human Language Technologies

(PANACEA)
ILC-CNR

Del Gratta Riccardo

2011-06-08

Contents

1 The registry Structure 3
1.1 Tags and ontology-like classification 3
2 Naming the PANACEA Pipeline 4
2.1 Naming convention for
Corpus Acquisition Component 4
2.1.1 Bilingual Parallel Corpus Acquisition Component 4
2.1.2 Bilingual Comparable
Corpus Acquisition Components 6
2.2 Monolingual
Corpus Acquisition Components 7
2.3 Naming convention for
Clean-Up and Normalization Components 8
2.4 Naming convention for
Text Processing Components 9
2.4.1 Text Processing Component (TPC) caveat. 9
2.5 Naming convention for
Format Converter 10
2.5.1 FCscaveat 10
2.5.2 Mono Converters 10
2.5.3 Multi Converters 11
3 Acronyms 12
Bibliography 12

List of Tables

2.1 Naming convention for parallel CACs. 5
2.2 Naming convention rule for parallel CACs 5
2.3 Naming convention for comparable CACs 6
2.4 Naming convention rule for comparable CACs 6
2.5 Naming convention rule for CACs. 6
2.6 Naming convention rule for (monolingual) CACs 7
2.7 Naming convention for CNCs 8

2.8 Naming convention rule for CNCs 8
2.9 Naming convention for TPCs 10
2.10 Naming convention rule for TPCs where tasks are grouped . . . 10
2.11 Naming convention for FCs 11
2.12 Naming convention rule for FCs where conversions are grouped . 11

Chapter 1

The registry Structure

The PANACEA registry will contain several web services which are pretty much
grouped into “service” categories. These categories, in the registry language,
are “tags” and can be added to web services when these are registered /updated.
These tags can be modified even by people which use the services and not only
by “registrators/creators” of services themselves.

In conclusion, one service can have more than one tag, and tags can be changed.
This last aspect, certainly, will not help to implement a stable and persistent
classification of proposed services.

1.1 Tags and ontology-like classification

Thanks to comments to our first draft proposal, we see that the PANACEA
registry can use ontology tags. For example, if we want to use the tag “re-
trieving” from the MyGrid ontology, see hitp://www.mygrid.org.uk/ontology,
we only have to write the following text as the tag:

http: / /www.mygrid.org.uk/ontology#retrieving

The use of ontologies is quite interesting for web service and workflow annota-
tion in PANACEA, but it is NOT in the platform version 2.

Briefly, our bootstrap in using ontology is (will be) simply based on the following
aspects:

e Customization of tags. In this case, we can create a sort of “ontology”, so
that each service can be enriched with these ontological properties;

e The use of tags as “ontological” properties. The ontological class being
Web Service;

e Closed vocabularies to limit the possible values of tags.

The basic idea is to simplify the web service(s) naming convention by using
this tag-system based classification. As an example, if a person is interested
in searching services in the registry, maybe (s)he wants not to be bored with
names such as convert_FreeLing2T O_Up2MorphoSyn ... But if the “sort of
ontology” is well done (and registering people is fine too), (s)he can browse the
ontology, extract the services which expose the “format converter” tag and have
a look to the tags to see the most suitable services.

Chapter 2

Naming the PANACEA
Pipeline

According to deliverable D4.1, cfr [1], the PANACEA pipeline consists of the
following components:

e Corpus Acquisition Component;
e Clean Up and Normalization Component;
e Text Processing Component;

Possible WorkFlow.

2.1 Naming convention for
Corpus Acquisition Component

The first classification is between bilingual and monolingual CACs. In the
set of bilingual CACs, a further distinction is made for managing parallel and
comparable corpora. In the set of monolingual CACs, the vocabulary of allowed
languages is limited to {it, en,el, es, fr,de}.

2.1.1 Bilingual Parallel Corpus Acquisition Component

We propose two distinct naming conventions for such services:

)

Using parallel as a tag In this scenario the “ontology” is as follows:

Main Class: Web Service
Type: CAC
CAC Type: parallel CAC
Name: CAC_<tool>_<lanl>_<lan2>_<domain>

Using parallel in the name In this case the parallel property is not inherited
directly from the classification, even if the tag can be left:

Main Class: Web Service
Type: CAC
(CAC Type: parallel CAC)
Name: CAC_parallelCAC_<tool>_<lanl>_<lan2>[_<domain>]

Here <tool> is the name of the tool used to create the service; lanl and lan2
are languages which € {it,en, el es, fr,de} and <domain> is the domain where
CACs are applied, if available. We can summarize the naming convention as
reported in table 2.1 below:

Recommended Optional

Type

CAC Type

Tool

First Language (lanl)
Second Language (lan2)
domain

Z| ===z <
= 2|2 2] <] 2

Table 2.1: Naming convention for parallel CACs

Finally, the proposed naming convention, table 2.2:

CAC[_parallelCAC] _<tool>_<lanl>_<lan2>[_domain]

Table 2.2: Naming convention rule for parallel CACs

2.1.2 Bilingual Comparable
Corpus Acquisition Components

We propose two distinct naming conventions for such services:

Using comparable as a tag In this scenario the “ontology” is as follows:

Main Class: Web Service
Type: CAC
CAC Type: comparable CAC
Name: CAC_<tool>_<lan1>_<lan2>[_<domain>]

Using comparable in the name In this case the comparable property is not
inherited directly from the classification, even if the tag can be left:

Main Class: Web Service
Type: CAC
(CAC Type: comparable CAC)
Name: CAC_comparableCAC_<tool>_<lanl>_<lan2>[_<domain>]

Here <tool> is the name of the tool used to create the service; lanl and lan2 are
languages which € {it,en,el,es, fr} and <domain> is the domain where CACs
are applied, if available. We can summarize the naming convention as reported
in table 2.3 below:

Recommended Optional

Type

CAC Type

Tool

First Language (lanl)
Second Language (lan2)
domain

Z| <<=z =<
= 22| 2| <] 2

Table 2.3: Naming convention for comparable CACs

Finally, the proposed naming convention, table 2.4:

CAC[_comparableCAC] _<tool>_<lanl>_<lan2>[_domain]

Table 2.4: Naming convention rule for comparable CACs

Tables 2.2 and 2.4 can be summarized in the next one (table 2.5):

CAC[_<type_of_cac>+CAC] _<tool>_<lanl>_<lan2>[_domain]

Table 2.5: Naming convention rule for CACs

2.2 Monolingual
Corpus Acquisition Components

The naming convention is simply:

CAC_<tool>_<lan2>[_domain]

Table 2.6: Naming convention rule for (monolingual) CACs

2.3 Naming convention for
Clean-Up and Normalization Components

Clean-Up and Normalization Component (CNC) is a tool used to remove irrele-
vant parts from downloaded web pages. According to [1], CNCs can be classified
following the tasks they address. These tasks are limited to the following set of
value:

tasks = { text normalization, language identification, web-page cleaning,
duplicate detection }

We propose two distinct naming conventions for such services:

Using the task as a tag In this scenario the “ontology” is as follows:

Main Class: Web Service
Type: CNC
CNC Task: task
Name: CNC_<tool>[[_<lan1>]_[<lan2>....]][_<domain>]

Using the task in the name In this case the task property is not inherited
directly from the classification, even if the tag can be left:

Main Class: Web Service

Type: CNC
(CNC Task: task)
Name: CNC_<tool>_<task>[[_<lani>]_[<lan2>....]][_<domain>]

Here <tool> is the name of the tool used to create the service; lanl and lan2. ..
are optional languages which € {it, en, el, es, fr,de} and <domain> is the domain
where CNCs are applied, if available. We can summarize the naming convention
as reported in table 2.7 below:

Recommended Optional

Type

CNC Task

Tool

First Language (lanl)
Second Language (lan2)
other language(s) (lanz)
domain

z|z|'z| 2| <] 2|~
IR < 2 < 2

Table 2.7: Naming convention for CNCs

Table 2.7 can be re-written as follows, (table 2.8):

CNC[<tool>_<task>[[_<lani>] [_<lan2>..]] [_domain]

Table 2.8: Naming convention rule for CNCs

2.4 Naming convention for
Text Processing Components

Text Processing Components follow Corpus Acquisition Components and Clean-
Up and Normalization Components and deal with the processing of the auto-
matically acquired and normalized corpora. These tools are adapted Natural
Language Processing (NLP) tools.

Here the language parameter is essential, as essential is the set of NLP task they
provide.

The naming convention for these services is challenging, since inserting all the
tasks they provide in the name of the service could result annoying for the users.
On the counterpart, inserting no task in the name could make complex for the
users the retrieval of the services they are looking for.

In cases such this one, the ontological structure is even more needed, since with
tags we can avoid inserting tasks into names.

We propose two distinct naming conventions for such services:

Using the task(s) as a tag In this scenario the “ontology” is as follows:

Main Class: Web Service
Type: TPC

TPC Task: taskl

TPC Task: task2

TPC Task: task3

Name: TPC_<tool>[[_<lan1>]_[<lan2>....]][_<domain>]

Using the task in the name In this case the task property is not inherited
directly from the classification, even if the tag(s) can be left:

Main Class: Web Service
Type: TPC
(TPC Task: taskil
TPC Task: task2
TPC Task: task3)
Name: TPC_<tool>_<list_of_task>[[_<lani>]_[<lan2>....]][_<domain>]

Here <tool> is the name of the tool used to create the service; lanl and lan2. ..
are optional languages which € {it, en, el, es, fr,de} and <domain> is the domain
where TPCs are applied, if available. We can summarize the naming convention
as reported in table 2.9 below:

2.4.1 TPC caveat

It is clear that this strategy in naming services is not winning. We need some-
thing shorter. One idea could be define a list of tasks and group them into
groups (tpc_group).

TPCs € tpc_group™ iif V task they provide, this task € tpc_group*. Table 2.9
can be rewritten as table 2.10

Recommended Optional

Type
Tool
TPC Taskl
TPC Task2

TPC Taskn

First Language (lanl)
Second Language (lan2)
other language(s) (lanz)
domain

Z|z| 2|z Z2|Z2|'Z2| 2| <
R << < < < 2 2

Table 2.9: Naming convention for TPCs

TPC_<tool>[_<tpc_group>] [[_<1lan1>] [_<1lan2>..]] [_domain]

Table 2.10: Naming convention rule for TPCs where tasks are grouped

2.5 Naming convention for
Format Converter

Format Converters are a special type of Text Processing Components where the
performed task is the conversion to and from many formats.

The first classification is between multi and mono converters. Services which
accept one single format in input and provide one single format as output are
mono converters, while services which accept different formats in input and pro-
vide different outputs, including one to many and many to one conversions, are
multi converters.

2.5.1 FCs caveat

It is important to note that these converters only change the structure of the
format, leaving untouched the annotation levels; so that we do not have to add
properties (tag(s)) for describing annotation levels for both input and output
but only the ones for input are needed.

2.5.2 Mono Converters
We propose two distinct naming conventions for such services:

Using both input and output formats as tags In this scenario the “ontol-
ogy” is as follows:

Main Class: Web Service
Type: FC
FC input format: format_in
FC output format: format_out
Name: FC_<tool>[_<domain>]

10

Using both input and output formats in the name In this case the in-
put/output properties are not inherited directly from the classification,
even if the tag(s) can be left:

Main Class: Web Service
Type: monoFC
(FC input format: format_in
FC output format: format_out)
Name: FC_<format_in>_2_<format_out>[_<domain>]

Here <tool> is the name of the tool used to create the service; format_in and
format_out are formats managed and <domain> is the domain where FCs are
applied, if available. We can summarize the naming convention as reported in
table 2.11 below:

Recommended Optional

Type Y
Tool Y
FC format_in N
N
N

FC format_out
FC Task (conversion)
domain

= =< = =< 2] 2

Z

Table 2.11: Naming convention for FCs

2.5.3 Multi Converters

As exposed in section 2.4.1, managing multi formats is similar to manage multi

tasks when the naming convention is addressed. Even here, the strategy of in-
serting all possible combination in naming services is not winning. We need
something shorter. One idea could be define a list of formats and group them

into groups in_formats_group and out_formats_group. and formats_group
which is the group which maps input format(s) over output(s).

FCs € format_group* iif V conversion they provide, this conversion € formats_group*.
Table 2.11 can be rewritten as table 2.12

[multi]FC_<tool>[_<formats_group>] [_domain]

Table 2.12: Naming convention rule for FCs where conversions are grouped

11

Chapter 3

Acronyms

CAC Corpus Acquisition Component

CNC Clean-Up and Normalization Component............................. 8
FC Format Converter

NLP Natural Language Processing................oooiiiiiiiiiiiiiii... 9

PANACEA Platform for Automatic, Normalized Annotation and Cost-Effective
Acquisition of Language Resources for Human Language Technologies
7" Framework Program; Information and Communication Technologies
Grant agreement for: Small or medium scale focused research project(STREP).
Grant agreement: 248064 1

TPC Text Processing Componentc.ooiiiiiiiiiiiiiiiiiinian... 1

12

Bibliography

[1] Prokopis Prokopidis, Vassilis Papavassiliou, Pavel Cecina, Laura Rimmel,
Thierry Poibeau, Roberto Bartolini, Tommaso Caselli, Vera Aleksic, Gregor
Thurmair Marc Poch, Nuria Bel, and Olivier Hamon. Technologies and
tools for corpus creation normalization and annotation (deliverable d4.1).
Technical report, PANACEA, 2010.

13

	The registry Structure
	Tags and ontology-like classification

	Naming the PANACEA Pipeline
	Naming convention for Corpus Acquisition Component
	Bilingual Parallel Corpus Acquisition Component
	Bilingual Comparable Corpus Acquisition Components

	Monolingual Corpus Acquisition Components
	Naming convention for Clean-Up and Normalization Components
	Naming convention for Text Processing Components
	TPC caveat

	Naming convention for Format Converter
	FCs caveat
	Mono Converters
	Multi Converters

	Acronyms
	Bibliography

